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ABSTRACT

_, The evolution of a two dimensional, incompressible, rapidly decelerating, time-

dependent viscous flow about a sharp-edged camber is simulated through the use of the

discrete vortex model. Vorticity is represented by a distribution of discrete point

vortices. Each vortex is convected in the velocity field, calculated locally using the Biot-

Savart law. The roll-up of the vortex sheets, the distribution of velocity and pressure

on the camber, and the drag force are calculated at suitable time intervals for a

prescribed time-dependent flow. Experiments are carried out in a vertical water tunnel

partly to measure the drag force and partly to record on a video tape the evolution of

the wake. The measured )nd calculated characteristics of the flow, such as the growth

of the wake and the forces acting on the camber are found to be in good agreement.

Furthermore, the numerical simulation provided a plausible explanation for the cause

of parachute collapse, a phenomenon which gave impetus to the numerical and

physical experiments described herein. The numerical model developed during the

course of the investigation is applicable to any time-dependent flow about two-

dimensional cambered plates (circular arcs ).
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I. INTRODUCTION

A. SEPARATED FLOWS
The separated flow about bluff bodies has been almost completely unyielding to

both analysis and numerical simulation for a number of mathematical reasons and

fundamental fluid dynamic phenomena. Separation gives rise to the formation cf free
shear lav-rs which roll up into vortex rings or counter-rotating vortices. They. in turn,

interact with each other, with the counter-sign vorticitv generated at the base of the
body, and with the motion of often unknown separation points. The wake becomes

unsteady even for a steady ambient flow and the problem of the determination of the

characteristics of the wake becomes coupled to the conditions prevailing upstream of

:he separation points. Evidently, viscosity modifies radically the inviscid flow. which.

in this case. cannot serve even as a first approximation to the actual flow. The

boundary laver equations are not applicable beyond the separation points and are,

therefore, of limited use in bluff-body flow problems.

The separated unsteady flow situations involving wake return, as in the case of a

decelerating or oscillating body. are an order of magnitude more complex than those
where the vortices continuously move away from the bodv. The net effect of the wake

return is twofold. Firstly. the proximity of the large vortices dramatically aflfects the
ounilary layer, outer flow. pressure distribution. an'i the generation and survival rate

of t he rw vorticity. Secondly. the vortices not only give rise to additional separation

noints and or additional vortices, but also stronrl affect the motion of the primary

vortices. These effects are further compounded by the diffusion and decay of vortices

an by t-.e three-dimensional nature of the flow.

The existing finite difference and finite clement methods cannot yet treat the high
iRe\nolds number flows with sufficient accuracv for a number of reasons. The finite

.: :Trcnce schemes require a verv 1,floe grd, a turbulence model. and a very large

cz;,.puter memory. It seems that the modcl:'ing of the turbulent stresses in the wake.

particuU.riv in time-dependent flows \ill be the major source of difficulty in al. fhture

calculatlon. Whether or not it Will ever be practical to apply the finite diffTerence and

-i -te emen.ent methods to high Reyno!ds number flows is unknown. The inherent

I'l icultics are certin, siT nicant enough to warrant exploring other soIltion

;neta .)'s.
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Certain separated time-dependent flows may be simulated through the use of the

discrete vortex model (DVM) (see e.g., Chorin 1973; Sarpkava 1975). The free shear

layers which emanate from the sides of the body are represented by an assembly of

discrete vortices. The strength of the elemental vortices are determined through the use

of the Kutta condition. The use of a suitable convection scheme enables one to march

in time and to calculate the evolution of the wake, the velocity and pressure

distributions, and the lift and drag forces acting on the body. The work described

herein deals with the application of the DVM to decelerating flow about a two-

dimensional camber.
-.

B. FLOW ABOUT A CAMBERED PLATE AND PARACHUTE COLLAPSE

The determination of the deployment sequence of an axisymmetric porous

parachute and the unsteady aerodynamic loads acting on it present a very complex

coupled problem. The development of an analytical or numerical model which takes

into account the effects of porosity, gaps, and variable opening schemes would allow

numerical experiments on a large class of parachutes, reduce the number of expensive
ield tests to a few judiciously selected ones, and enable the designer to calculate the

time history of the fail of the parachute and the strength required to survive the

aerodynamic loads. However, the development of such a model is hampered by a

number of difficulties.

The previous models for parachute loads are based by and large on empirical

assumptions (see e.g., Heinrich and Saari 1987: Mcwey 1972). They rely on the

observation that families of parachutes open in a characteristic length and seem to

have aerodynamic properties that relate well to the projected area of the parachute.

The apparent mass is assumed to be a function of the projected area only and is not a

function of the prevailing flow characteristics. The vortex sheet analysis was used by

Kimas (1977) to derive the acceleration-independent apparent mass coefficient for

arbitrary-shaped axisymmetric surfaces. Muramoto and Garrard (1984) used a

continuous-source model to predict the steady-state drag of ribbon parachutes. The

analyses did not, however, deal with the evolution of the unsteady wake and its

interaction with the canopy.

It is in view of the foregoing that a fundamental study of the separated timc-

dependent flow about two-dimensional rigid cambered plates was undertaken. Ciearl.

the flow about a rigid cambered plate is considerably simpler than that about a porous,

12
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axisvmmetric. and flexible parachute and the results, regardless of the degree of their
agreement with corresponding experiments, may not have direct relevance to the
practical problem under consideration. But the object of this investigation was the
inderstanding of the evolution of the wake under controlled conditions rather than to
provide a design tool. It is hoped that an investigation of this type will reveal the
underlying physics of' the phenomenon (particularly that of the parachute collapse),
help to interpret the Full-scale results and will provide inspiration for the development
of more general vortex models with which the dynamics of axisynmmetric, porous, and
flexible parachute canopies can be investigated.

%
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II. ANALYSIS

A. TRANSFORMATIONS AND THE COMPLEX VELOCITY POTENTIAL
The calculation of the velocity of any one of the vortices and the force acting on

the body requires a conformal transformation (in which the camber becomes a circle),
a conplex-veiocitv potential representing the vortices, their images, and the two-
dimensional irrotational flow around the body, and the use of the generalized Blasius

theorem.

The flow in the circe plane may be transformed to that about a cambered plate
throu.h the use of two successive transformations, one from ; plane to the o plane

and :Ie other :rom the plane to the z plane. These are given by (see Fig. 2.1)

a b.

¢. t.,4pie : -,e

. ,

2ib

p

.' Figure 2.1 Circle and physical planes
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b2

z - , and ;° = +m (2.1)

Combining the two, one has a direct transformation from the plane to the z

plane as

b2

z = +m - (2.2)+ m

It is easy to show that the camber in the z plane is a circular arc.

The y-axis in the z plane passes through the tips of the camber. It is

advantageous to locate the origin of the coordinate axes at the geometric center of the

camber. i.e.. at the center of the circle part of which represents the camber. This is

easily accomplished by shifting the origin of the coordinate axes by

2nr - I
z 0 ni(2.3)

where z0 is the x coordinate of the origin of the circle in the z plane. Thus, one has

b
2

z = +m - V- zo , withz = -z (2.4)
-m 0

which transforms the circle in Fig. 2.la to the physical plane in Fig. 2.1d. Table I

summarizes the relationship between m, z0 , the included angle of the camber, b, and

the radius of the camber.

TABLE 1

SUMMARY OF THE PARAMETRIC RELATIONSHIP

m z 2a b R = l/m

cos60 = .5 -1 120 .866 2
cos45 = .707 0. ISO .707 2
cos3O = 8S66 1,'/l 240 .5 2:' /"3

15



' le complex potential function W in tile cicle plane (see ie. 2.1a, which
describes a uniform flow U (assumed to be tinic-dependent) with a doublet at the
origin to simulate the cylinder, Ikq clockwise-rotating vortices (called q-vortices), [kp
counter-clockwise rotating vortices (called p-vortices), and the images of" all the p-and
Ll-vortices in the circle plane may be written as

W= -U( + ---) + P Ln(; - T) Ln(; - )

L~+2rt 2op "P n( 0

in i C- r~q~(+ irPLn( -- kP) - " " PLn( " ", ) -
12r k= -kp

CF2c in" r, f r c+I- 11 n ~- k q Ln( -' -kq L( 252ir C -~lit kq) L- l ( =- 2

in which 'kp and ;,p represent respectively the strength and location of the k-th p-
vortex, F and kq the strength and location of the k-thi q-vortex, and c the radius of'
the cylinder; an overbar indicates a complex conjugate. The need for the separate
identilication of the p-and q-vortices and for the singling out of one of the vortices in
each shear layer (namely Fop and F0q i.e., the nascent vortices ) will become apparent
later.

B. COMPLEX VELOCITIES OF VORTICES
The convection of the vortices and the calculation of the forces acting on the

body require the evaluation of the velocities at the vortex centers. For the velocities in
the circle plane this reduces to subtracting from Eq. (2.5) the complex potential
corresponding to the vortex for which the velocity components are to be determined
and evaluating the derivative of the remaining terms at To determine the
velocities in the physical plane, however, one has to subtract (iFk;21T) ln(z - /'k) from,. Eq. (2.5) or, in terms of4, the terms (see e.g., Sarpkaya 1967, 1975)

iFk n irk  Ln (I c (2.6)

16
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It should be noted that the first term in Eq. (2.6) is the complex function

corresponding to the k-th vortex in the plane. The second term appears merely as a

consequence of the transformation used. It is easy to show that for a p-vortex Eq.

(2.6) may be reduced to (see e.g., Mostafa 1987)

rkp (b2)(kp) + m)
2n [(, p + m)2 + b2 2

A similar expression can be written for the q-vortex.

C. KUTTA CONDITION

The fact that the flow separates tangentially with a finite velocity at the edges of

the plate (Kutta condition) may be expressed by requiring

dW
- 0 at = t -m ±:ib (2.8)

Thus, inserting Eq. (2.5) in Eq. (2.8) one has

+ _ _ ir_Oq I

;t c2  2 ;t -Oq c22rto ;, -p t " -oq

mI 1 miF
-- .. - k  

c2"" K C C2 ;t kq _C 2-

k= t -kp ;t
kp 'kq

c2

-U(1- - -) =0. (2.9)

Equation (2.9) may be decomposed into two parts as

17
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i I I ir _
__% -5op_ ;O-q _

-- 5O_

+ (-u0 +v )=. (2.10)

where the terms containing the strength of the nascent vortices represent the velocity

induced at the tip of the camber by the nascent vortices and the term in parenthesis the

velocity at the tip due to all other vortices (and their images), the doublet at the center

of the circle in the plane and the ambient velocity.

Equation (2.10) represents two coupled equations for the strengths and positions

of the nascent vortices. Thus, the solution of the said quantities does, in general.

require an iteration. However, this iteration may be avoided by noting that the

velocity induced by a nascent vortex at the opposite tip is very small and certainly

negligible. Thus, Eq. (2.10) for one of the nascent vortices may be reduced to

+irq I I (-uo+iv) 0 (2.11)

2 T -%q C' -

-Oq

A simiar expression may be written for the other nascent vortex. The use of the Kutta

condition, as expressed by Eq. (2.1 1). wii! be further explained following the discussion

of the tip velocity. It suffices to note that all nascent vortices satisfying the Kutta

condition do not yield either the same tip velocity or the same velocity distribution in

the neighborhood of the tip. There are, in fact, certain preferred positions for the

nascent vortices which yield physically realistic velocity distributions near the tips of

the cambered plate. These nascent vortex positions have been determined by Mostafa

(197).

D. TIP VELOCITY

According to the Kutta condition the tangential velocity at the tip is finite. It

may be determined through the use of I'tlopital's rule.

The velocity at the tip is given by

' d dW dW d"
Sd = d d1 at z= Zo 2ib (2.12)

dz d; az0

Zia



The use of I1Hopital's rule then yields.

dWI dW ib
dzd] (d ) (2.13)

1z di,Z--- Zt

Equation (2.13) yields the desired finite tip velocities.

E. TIME DEPENDENT-FORCES

The Force acting on the body in the physical plane may be calculated either

through the use of the pressure distribution or through the use of the rate of'change of

impulse.

Bernoulli's equation for unsteady flow is given by

p V 2  P V 2  2 OV+  ds = f(t) (2.14)
p 2 p 2

where the indices indicate two points on the body in the physical plane. Since there is

no pressure drop across the shear layer and since the integral term in Eq. (2.14) is zero

at the tip (i.e.. ds= 0), one has

V2  v 2

f(t) Qt Vt2 (2-15)
2 2

where Vtl and Vt2 represent the tangental velocities on the upstream and downstream

faces of the tip. It is important to note that f (t) in Eq. (2.15) is also the time rate of

chance of circulation, i.e.. the rate at which vorticity is shed into the wake from the tip

of the cambered plate.

The normalized form of Bernoulli's equation between any two points m and n

then becomes

P m - Pn Vi- 2- Vt22  v n2-v

"' ~ 2 + n m+ I
2, - , 22 ds (2.16)

0 0 0 t m 0o2

19
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The integration of the differential pressure between the upstream and downstream faces

of the camber yields the force components in the x and y directions, i.e., the drag and

lift forces.

The force acting on the body can also be calculated through the rate of change of

impulse. It is given by

m2  4
F = 4ltpc2U( 1 - 2) + ,[ (zn - Z 1 (2.17)

which may be written as

F cl" c m
Cd +iC 1 - 2p 2b r- ) ()0--)( -

c 40 Fk ; c{ -- [f( ) f( )]} (2.18)
2b (Liot-c) T'c c

in which U° is the reference velocity; U, the rate of deceleration of flow and z=

ie., the transformation given by Eq. (2.4). Equation (2.18) may also be deduced

directly from the generalized Blasius equation. It is important to note that the force

calculated from Eq. (2.18) includes the effect of the rate of change of circulation

between two successive time steps. Thus, it may be smaller or larger (depending on the

sign of r) than the force calculated through the integration of the instantaneous

diffirential pressure Eq. (2.16). This is because of the fact that the instantaneous

pressure depends only on the prevailing flow conditions and does not account for the

rate of change of total circulation between successive time steps. In the calculations to

follow U0 and c are taken as unity for sake of simplicity.

F. METHOD OF CALCULATION

The methods used in the past in the determination of the vorticity flux from

sharp-edged bodies may be roughly classified into two broad categories. The first of

these involves the use of variable nascent vortex positions (see e.g., Sarpkaya 196S,

1975) and the second, the use of fixed nascent vortex positions (see e.g., Clements

1973-1975).

20



In the present analysis the method of variable nascent vortex positions is used.

To explain the computational details of the method let us consider a particular time t

after the start of the motion and assume t to be sulliciently large so that there are a

number of vortices in the wake. Then the appearance and convection of the vortices

proceed as follows:

(1) Select a vortex position along the radial line defined by 0 = 117.720 (see
Mostafa 1987). The very first location is taken r = 1.1

(2) Calculate the strength of the nascent vortex which satisfies the Kutta
condition. This is an exact solution and requires no iteration.

(3) Place the nascent vortex at the corresponding points in the circle and physical
planes and calculate the tip velocity.

(4) Calculate a new nascent vortex strength from 2.5 V1 - - V2)At where V1 is the
tip velocity and V2, the average of' three velocities along the radial line in the
physical plane, i.e., at r = 1.05, 1.10 and 1.15.

(5) Compare the newly calculated circulation with that obtained from the Kutta
condition. If the difference between the two circulations is less than 0.001N procede to the next step. If the said dif'erence is larger than 0.001, carry out

an iteration on the radial location of the nascent vortex as many times as
necessary until the above condition is satisfied. If' the circulation calculated
f'rom the Kutta condition is larger than that calculated from the tip velocities.
the vortex must be moved towards the cylinder and vice versa. Also, each
time the direction of the motion of the nascent vortex is changed (inward or
outward), the marching distance is halved in order to accelerate the
convergence of the two circulations.

(6) Calculate the velocity induced at the center of all other vortices:

(7) Convect the two nascent vortices with a velocity 0.5(V 1  V, ) for a time
interval At (note that the vorticity is convected with the average velocity of
the shear layer).

(S) Convect all other vortices for the same time-interval At using a second order
scheme given by

z(t+-At) = z(t) + 0.5 [3Z(t) - z(t- At) I At (2.19)

in which Z' = u + iv.

(9) Remove the vortices from the calculation whenever they come nearer than
0.05 to the camber in the physical plane (except the first 20 vortices from the
tip)-

(10) Coalesce the same sign vortices with a separation of less than 0.05 (in the
physical plane, except the first 20 vortices);
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(11) Calculate the tangential velocities and pressures on the inner and outer faces
of the camber. Determine the drag and lift forces through the integration of
pressure and through the use of the rate of change of impulse. Make plots of
suitable variables (e.g., velocity distribution near the tip, variation of nascent
vortex circulation with time, evolution of the wake, etc.);

(12) Check the flow conditions to determine the state of the calculations:

(a) If V1 - V2 > 0.1 repeat the foregoing steps;

(b) Stop the introduction of nascent vortices if 0 < V1 - V2 < 0.1 and
return to step No. 6;

(c) If V2 > V1 switch the angular positions of the nascent vortices to their
image points. Calculate V, as the average of the three velocities, at the
upstream side of the tip of the camber, at three radial locations (0.95,
0.9, and 0.85) and repeat the foregoing steps; and

(13) Make plots of the variations of various flow parameters (e.g., tip velocity,
nascent vortex circulation, evolution of the wake, force coefficients, etc.) and
terminate the run.

The foregoing steps are quite general and can be used for any camber, provided

that the optimum points of placement of the nascent vortices are determined through

the use of a method developed by Mostafa (1987).
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111. DISCUSSION OF RESULTS

A. NUMERICAL AND PHYSICAL EXPERIMENTS

The calculations were carried out for a time-dependent normalized velocity given

by

U U t
- for T <- <9.72 (3.1)

and

U-' U - .97T-0.05T2 -3.70 (3.2)

and

A = 0.97-0.10T (3.3)

in the interval 9.72 < T < 11.48 and

U = -0.3423T + 0.0072T 2 + 3.82 (3.4)

and

A = -0.3423 + 0.01445T (3.5)

in the interval 11.48- <T. - 17.95. For T larger than 18, the velocity and acceleration

are zero. These velocities and accelerations correspond to that encountered in a series

of experiments carried out in a vertical water tunnel. A detailed description of the

equipment and procedures is given by Sarpkaya and Ihrig (1986) and will not be

repeated here. Evidently. the calculations can be carried out for any specified variation
of' the velocity. For the case under consideration, the flow begins to decelerate at I

5"%
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.972 and the velocity of the ambient flow reduces to zero at about T = IS. (,ee

Fig. 3.1)

The computer program provided, at times specified, the positions of all tile

vortices, the rate of shedding of vorticity from the tips of the camber, the velocity

distribution on the upstream and downstream f'aces of the camber, the differential

.pressure distribution, and the force coefficients.

Figures 3.2 through 3.5 show, at T = Lot c = 6.00, the evolution of the wake,
the dil'erential pressure distribution, and the velocities at the upstream and

downstream faces of the camber. Figures 3.6 through 3.17 show similar plots of the
wake. pressure, and velocity at larger times. These and other figures (not reproduced

here for sake of brevity) show that the characteristics of the flow develop synmetrically

prior to the onset of deceleration (T* < 9.72) and the differential pressure is positive

every"Vhere (i.e.. the pressure inside the camber is larger than that outside).

Following the onset of deceleration (see e.g., Figs. 3.8, 3.12, and 3.16), the

differential pressure near the axis of the camber becomes increasingly negative. The

saznificance of this result is that had the model been flexible (as in the case of a
parachute) the central part of the camber would have collapsed as a result of the

particular deceleration it is subjected to.
For T' larger than about 13 (for the ambient flow under consideration), the

velocities induced at the downstream edges of the camber by the large vortices moving

sideways and towards the camber give rise to oppositely-signed vorticity. This, in turn.

leads to the rapid growth of the secondary vortices (see e.g., Figs. 3.14 and 3.15 at T*
= 21.275). Attention is drawn to the fact that the differential pressure shown in Fig.

3.16 is niative o-,,er a large central portion of the camber.

Figure 3.18 shows the variation of the circulation of the nascent vortex with T*.

As expec:cd. the vorticity flux is quite large at the start of the motion. It decreases

gradualy prior to the onset of deceleration and rapidly thereafter. For T* larger than

about 12. i.e., when the secondary vortices come into existence, the circulation becomes

"aeative. It reaches a minimum value when the ambient velocity and acceleration

reduce to zero (at about T* = IS). The subsequent motion ci "e primary and

secondary vortices increases the tip velocity and hence the strength of the n: .sccnt
vortices. Nevertheless, the circulation remains negative, i.e., only the secondary

vortices continue to receive additional vortic.t%.

.J2
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Figure 3.19 shows the velocities V1 and V, as a function of T*. The tip velocity

V decreases from an initially large value of about 3 to a nearly constant value of

about 1.4 just prior to the onset of deceleration. Subsequently, V1 decreases rapidly

during the period of' deceleration and prior to the inception of the secondary

separation. Then V1 increases to about 2 because of the backward motion of the large

vortices near the tips of the camber. Finally, V1 decreases once again as the primary

and secondary vortices move sideways and away from the tips of tile camber due to

their mutual induction (see Fig. 3.15).

The variation of V, with T* is significant only during two, relatively short, time

intervals: at the start of the motion and at the start of the deceleration. These are the

periods during which the vorticity flux changes rapidly in order to maintain the Kutta

condition. During the remainder of time V, is negligibly small, as expected on the

basis of the pioneering experiments of Fage and Johansen (192S) with steady flow over

various types of bluff bodies.
Figure 3.210 shows the variation of the drag coefficient as a function of T*. It is

calculated through the the integration of pressure about the camber. Figure 3.20 also
asoxs that Cd rises rapidly (due to the rapid accumulation of vorticity in the growing

vortices) and begins to decrease as the vortices develop under the influence of a

constant ambient velocity. Then the force decreases sharply at the onset of

dec'!leration and gOes throug~h zero near the Middle of the deceleration period (T*

. 14). The force acquires its largest negative value towards the end of the deceleration

ncricd. Subsequently. the force gradually decreases to zero.

Figure 3.21 shows a comparison of the calculated and measured drag coefficients.

In ucneral the acreement between the calculated and the measured drag coeffIcient is

quite good. The differences are primarily due to the fact that the diffusion of vorticitv

ihas not been, taken into account in the numerical analysis. It is possible to introduce a

small artificial reduction in circulation in order to bring the calculated and measured

values into closer agreement. This has been avoided in tile present analysis in order to

keep the discrete vortex analysis as pure and simple as possible.

.inally, Fig. 3.22 shows a comparison of the normalized drag forces for various

''criods of the initial steady flow. prior to the onset of deceleration. It is clear that the

ra, forces beyond the point of deceleration are nearly identical. In other words, the

force acting on the camber is not materially affected bv the duration of the ambient

st.ad, "ow within the range of the paran'eters encountered in the present study.
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B. CONCLUDING REMARKS

The results presented in this section have shown that the discrete vortex model

can be used with confidence to predict the evolution of the wake about a cambered

plate immersed in an arbitrary time-dependent flow. The drag coeflicients resulting

from the analysis and experiments agree reasonably well. This agreement can be

improved with the introduction of a small circulation dissipation.

The development of negative differential pressures near the central region of the

camber is thought to be primarily responsible for the inception of the partial collapse

of a parachute at high rates of deceleration. This phenomenon takes place even when

the total drag force acting on the parachute is still positive. The sample analysis

presented herein also shows that the negative differential pressure can cover a large

region of the parachute and even result in negative drag. The basic idea emerging from

the analysis reported herein is that the designs which incorporate into them the idea of'

delaying or preventing the return of the shed vortices to the canopy (e.g.,porositv

management. change of deceleration history, parachute shape, dissipation and or

destruction of the organized wake) will be the ones which could avoid the col!::,e

phenomenon. Extensive analysis and small scale experiments coupled with a lew

judiciousiv selected field tests may help to arrive at practically and phenomenologically

sound parachute designs.

N
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